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SUMMARY

A new �nite volume method for the incompressible Navier–Stokes equations, expressed in arbitrary
Lagrangian–Eulerian (ALE) form, is presented. The method uses a staggered storage arrangement for the
pressure and velocity variables and adopts an edge-based data structure and assembly procedure which
is valid for arbitrary n-sided polygonal meshes. Edge formulas are presented for assembling the ALE
form of the momentum and pressure equations. An implicit multi-stage time integrator is constructed
that is geometrically conservative to the precision of the arithmetic used in the computation. The method
is shown to be second-order-accurate in time and space for general time-dependent polygonal meshes.
The method is �rst evaluated using several well-known unsteady incompressible Navier–Stokes problems
before being applied to a periodically forced aeroelastic problem and a transient free surface problem.
Published in 2003 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the last decade or so, one class of problems in computational �uid dynamics that has
undergone substantial development is the class where the �uid domain boundary is either ex-
plicitly time-dependent or is unknown a priori and determined, in a coupled fashion, as part
of an unsteady �ow solution. Free surface, �uid-structure interaction, and forced boundary
motion �ows are typical of problems in this class. A natural way to formulate moving bound-
ary problems is the so-called arbitrary Lagrangian–Eulerian (ALE) form of the fundamental
conservation laws where the domain boundary and interior control surfaces are allowed to
move arbitrarily in time and which recovers the Eulerian and Lagrangian forms as special
limiting cases of the general ALE form [1–3].
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In addition to the usual considerations associated with implementing an incompressible �ow
algorithm (e.g. the particulars of the pressure-velocity coupling procedure, the suppression of a
checkerboard pressure �eld, etc.) the presence of a time-dependent mesh introduces a number
of additional considerations that need to be addressed. Arguably, the most basic of these is a
purely geometric requirement that, in order for the discrete form to be conservative in time,
the volume increments swept out by a moving control surface must be computed in a way
that is consistent with the time integration of the conservation laws governing the �ow. This
requirement for a consistent prescription for the time-dependent geometric quantities in a �nite
volume method has been formalized by many researchers [4–6] and is commonly referred to
as the geometric conservation law (GCL).
Here, a recently developed edge-based �nite volume method [7] for the incompressible

Navier–Stokes equations is revised and extended to admit a time-dependent mesh. An im-
plicit multi-stage time integrator is constructed that is GCL compliant to the precision of the
arithmetic used in the computation and is shown to be second-order-accurate in time for an
arbitrarily deforming mesh. As in Reference [7], the use of a staggered grid system eliminates
the need for ad hoc modi�cations to suppress a checkerboard pressure �eld as well as the
need to prescribe a boundary condition for pressure. Other aspects of the basic method on
�xed grids, as well as a brief discussion of other related edge-based �nite volume methods
can be found in Reference [7]. Here, the method is �rst evaluated using several well-known
unsteady incompressible Navier–Stokes problems before being applied to a periodically forced
aeroelastic problem and a transient free surface problem.

2. BASIC CONSERVATION LAWS

The equations governing incompressible �uid dynamics stated in weak co-ordinate-free form
for a time-dependent �nite volume �(t) with boundary �(t) are given by

@
@t

∫
�(t)
�v d� +

∮
�(t)
[�v(v − s) · n − n · T] d� +

∫
�(t)
B d�=0 (1)

and ∮
�(t)
[v · n] d�=0 (2)

Adopting the incompressible form of the Navier–Poisson law as the constitutive relation for
the �uid gives

T=−pI+ � (3)

where � is the viscous stress tensor given by

�=�(∇v+ v∇) (4)

In Equations (3) and (4), T and I are the stress and identity tensors, respectively, and v∇ is the
transpose of ∇v. In Equation (1), v is the �ow velocity, n and s are the outward unit normal
and control surface velocity vectors, respectively, and B is the vector of volume sources. The
variables %; �, and p denote the �uid density and viscosity, and �ow pressure, respectively. In

Published in 2003 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:253–279



IMPLICIT EDGE-BASED ALE METHOD 255

the case of turbulent �ow, all �ow variables take on their usual Reynolds-averaged de�nitions
with the �uid viscosity interpreted as the �ow eddy-viscosity. Appropriate initial and boundary
conditions for the velocity �eld complete the speci�cation of the incompressible �ow problem.
In Equation (1) s= v corresponds to the Lagrangian view of conservation, whereas s= 0

corresponds to the Eulerian view. Because of the generality, or in other words, arbitrariness
of the description o�ered by Equation (1) it is often referred to as the arbitrary Lagrangian–
Eulerian (ALE) form of the Navier–Stokes equations.

3. NUMERICAL METHOD

3.1. Data structures and assembly

Equation (1) is discretized in space using an edge-based �nite volume method that results
in a strictly conservative form that is valid for arbitrary n-sided time-dependent polygonal
control volumes. Figure 1 illustrates a typical mixed-element mesh comprised of quadrilateral
and triangular control volumes. In addition to the main mesh, a dual mesh is constructed by
connecting the median point of each main edge sharing a common vertex with the centroids of
the adjoining main control volumes as shown in the �gure. This system of main and median
dual control volumes forms a staggered grid arrangement where the velocity components are
stored at the vertices of the main mesh and pressure is stored at the centroids of the main
control volumes as indicated.
At this point in the history of the development of numerical methods for incompressible

�ows, the use of a staggered mesh may appear, at least initially, to be somewhat quaint,
and indeed, some algorithmic complexity is associated with a staggered grid arrangement

Figure 1. Connectivity convention and storage locations for edge-based discretization.
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that can be avoided by simply collocating all �ow variables. However, the use of staggered
control volumes for evaluating the momentum and pressure equation �uxes eliminates the need
for a pressure boundary condition for incompressible Navier–Stokes problems with Dirichlet
boundary conditions. Furthermore, the use of staggered control volumes eliminates the need
to modify the numerical �uxes in order to suppress a checkerboard pressure �eld, which is
admitted by collocated �nite volume and �nite di�erence schemes. It has been our experience
that the bene�ts of a staggered mesh easily make up for any additional algorithmic complexity
or computational overhead incurred by the approach.
The spatial residuals of mass and momentum are evaluated by projecting the dependent

variables in Equations (1) and (2) onto a Cartesian basis and performing a counter-clockwise
integration around the contour surrounding the main and dual control volumes, respectively.
The former integration is the basis for the assembly of a purely elliptic equation that is inde-
pendent of time, which, in conjunction with the momentum equations, governs the evolution
of the pressure �eld.
The integration of the mass and momentum residuals is facilitated by forming a list of main

edges comprising the tessellation with endpoints denoted v0 and v1 for each edge in the list.
Each main edge in the tessellation shares exactly two main control volumes with centroids
denoted by c0 and c1 which are arranged by construction such that c0 lies to the right of the
directed line from v0 and v1 as shown in Figure 1. This connectivity convention allows the
instantaneous outward normal vector for the main control volume edges to be given by

nc0=−(yv1 − yv0)i+ (xv1 − xv0)j

nc1=−nc0


main edge (5a)

As shown in the �gure, each median dual control volume edge has two facets with scaled
normal vectors n0v0 and n

1
v0 oriented outward from dual control volume v0, and n0v1 and n

1
v1

oriented outward from dual control volume v1. The normal vector for each dual edge facet
is given by

n0v0=(ymid − yc0)i − (xmid − xc0)j

n0v1=−n0v0


 dual edge facet 0 (5b)

n1v0=(yc1 − ymid)i − (xc1 − xmid)j

n1v1=−n1v0


 dual edge facet 1 (5c)

For notational brevity, the superscripts denoting the two dual edge facets in Equations (5b)
and (5c) will be deleted in all future references to the dual edge normal vectors with the
understanding that in all expressions involving a dual edge normal both facets are included.
Since a staggered variable arrangement is used in the present method, three distinct data

structures are used to facilitate the computation of the control surface �uxes and assembly
of the discrete equations for the velocity and pressure �elds. The �rst of these is an edge
data structure which stores the node and adjoining element numbers, the normal vectors, and
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�uxes associated with each main and dual edge. The second of these is a node data structure
storing the �uid velocity vector, velocity gradient tensor, pseudo velocity vector, dual control
volume area, source term, as well as node and neighbor node coe�cients associated with
the momentum equations. Finally, an element data structure is de�ned to store the node and
neighbour node coe�cients as well as the source term for the pressure equation.
An edge-based procedure is used to assemble the discrete form of the conservation laws

for general, n-sided polygonal meshes. The �rst step in assembling the discrete linearized
equations is a sweep over edges where edge formulas are used to compute the individual
�ux components associated with each main and dual edge. The edge �ux data, expressed
in the form of node and neighbour node coe�cients and source term, are then assigned to
the two nodes of the edge. Finally, a sweep over edges is performed which, using edge
connectivity information, sums the edge nodal data into global node and global element data.
After the global equations for velocity and pressure have been assembled, they are solved
in a segregated fashion using Jacobi iteration. A detailed prescription of the overall solution
strategy for unsteady �ows with moving boundaries is given in Section 3.6.

3.2. Time integration of the momentum equations

Integrating the momentum equations over the dual control volumes leads to the semi-discrete
form

dW
dt

+R=0 (6a)

where W=��v is the momentum vector and the spatial momentum residuals are given by

R=
∑
[�v(v − s) · n+ pn − n · �]e + B� (6b)

and the summation is taken over all edge facets forming a closed dual control volume. A
single-step diagonally implicit Runge–Kutta (DIRK) method is used to advance the velocity
�eld according to the two-stage formula [8]

W(1) =Wn −�t(�10Rn + �11R(1)) (7a)

Wn+1 =Wn −�t(�20Rn + �21R(1) + �22Rn+1) (7b)

where the following set of weights yield a formally second-order-accurate method when Equa-
tion (6a) is a set of linear equations.

�10 = 0:0; �11 = 0:2551; �20 =−0:0545; �21 = 0:7545; �22 = 0:3

This two-stage method is self-starting, can accommodate grid motion on a stage by stage
basis and requires storage of the spatial residuals at only two time levels. Furthermore, the
�rst-order implicit Euler method can be easily recovered as a special case of the two-stage
method by executing only the �rst stage with �11 set to unity.
Since the velocity �eld is advanced in time implicitly, a system of algebraic equations is

formed for the momentum equations at each outer iteration of each time step. Furthermore,
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since Jacobi iteration is used to solve the system of equations, the spatial momentum residuals
in Equation (6b) are cast in the form:

R=Av − b (8)

where A is the diagonal coe�cient of v and b contains source terms as well as o�-diagonal
neighbour contributions to the spatial residual.
Using the notation of Equation (8), the �rst stage of the DIRK method which advances the

velocity from t n to t (1) is governed by the non-linear system of algebraic equations[(
��
�t�11

+ A
)
v − b

](1)
=
[
�v�
�t�11

]n
(9a)

Similarly, the second stage of the Runge–Kutta method which advances the velocity from t (1)

to t n+1 is governed by the non-linear system[(
��
�t�22

+ A
)
v − b

]n+1
=
[
�v�
�t�22

− �20
�22
(Av − b)

]n
−
[
�21
�22
(Av − b)

](1)
(9b)

Equation (9a) and (9b) are linearized by forming the coe�cients using the most recent values
of v and p computed in the outer loop of the iterative solution procedure. The �ow pressure,
which appears in Equation (6) through (9), is not obtained by a time marching procedure
such as Equation (6) or (7). Rather, a pressure equation is solved in a segregated fashion
along with the solution for the velocity �eld within the iterative procedure. The details of the
pressure equation are developed in Section 3.5 and the overall solution procedure for unsteady
incompressible �ow with moving boundaries is described in Section 3.6.

3.3. Geometric conservation

Under certain assumptions regarding the �ow �eld, Equation (1) reduces to a purely geometric
statement relating the time-dependent control volume �(t), the control surface �(t), the control
surface velocity s(t) and the unit normal n(t). In the context of �nite volume methods the
consistent treatment of these time-dependent geometric quantities is often referred to as the
geometric conservation law (GCL) which may be regarded as an identity that must be satis�ed,
either explicitly or implicitly, if the conservative property is to be maintained [4–6]. Here,
the geometric identity is satis�ed implicitly at each stage of time integration by adopting the
‘time-averaged normals form’ of the GCL [5].
In the present two-stage ALE method, mesh movement is, by construction, limited to the

�rst stage of time integration so that mesh co-ordinates need only be stored at two discrete
time levels. More precisely, during the �rst stage, x(1) is a state variable and is updated using
the same implicit procedure as for the pressure and velocity variables. During the second
stage, x(n+1) is held constant and equal to x(1). However, even with mesh movement limited
to the �rst stage of time integration, the two-stage DIRK scheme requires a consistent GCL
compliant prescription for the control surface velocity and unit normal vectors for both stages
of time integration since the vector of conserved variables appears di�erenced across the full
time step in the second stage formula, Equation (9b).
When the GCL compliant control surface velocity and normal vectors are adopted in the

assembly of the convective �ux for both stages of the DIRK time integrator, the resulting
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method is geometrically conservative to the precision of the arithmetic used in the calculation
and is second-order-accurate in time on an arbitrary time-dependent mesh.
Although the compressible form of the mass conservation equation is typically used to

derive the GCL, the momentum equations, Equation (1), can be used with equal facility to
derive the basic identity under appropriate restrictions on the �ow variables. Assuming uniform
velocity, pressure and density, and the absence of a momentum source term, Equation (1), in
semi-discrete form becomes

d�
dt

−∑(s · n)e=0 (10)

where the summation is taken over all edge facets forming a closed dual control volume.
Integrating Equation (10) over the �rst stage of the DIRK time integrator gives

�(1) −�n −
∫ t+�11�t

t

∑
(s · n)e dt=0 (11)

Equation (11) is a statement of geometric conservation in discrete form and is an identity
which must be satis�ed if the conservative property in time is to be respected. Here, the
identity is satis�ed exactly by de�ning the scaled normals n(t) as a weighted average of the
t n to t (1) time level areas.
For polygonal control volumes, the integrand of Equation (11) is a linear function of time

and therefore the integral can be computed exactly by sampling the integrand once at the
midpoint of the time interval �t. Evaluating Equation (11) at the midpoint of the �rst stage
gives without approximation

�(1) −�n − �11�t
∑
(s · n)(1=2)e =0 (12)

Following Zhang et al. [5], it can be easily veri�ed that the identity, Equation (12), is satis�ed
exactly when the following time-averaged de�nitions are adopted for the dual edge velocity,
s(1=2), and dual edge normal vector, n(1=2), when assembling the spatial residual R(1) for that
stage.

s(1=2) =
1
2

(
x(1) − xn)n0
�11�t

+
x(1) − xn)n1
�11�t

)
(13a)

n(1=2) =
1
2
(n(1) + nn) (13b)

Similarly, the discrete form of the GCL will be satis�ed identically during the second stage
if the de�nitions given in Equation (13) are used in the evaluation of the convective �uxes
when assembling the spatial residual R(1) for that stage but with �11 replaced by �21.
Since the GCL prescribes the consistent evaluation of volume increments associated with

grid motion the time-averaged normals given in Equation (13b) should only be used to eval-
uate the convective �ux at a control surface. The pressure and viscous �uxes should be
evaluated using the current mesh con�guration, i.e. either x(1) or x(n+1), rather than the time-
averaged normal vector given in Equation (9a). To that end, the time-averaged edge normal
and edge velocity vectors, Equation (13), are notated explicitly in the edge �ux formulas that
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are presented in the following sections. Again, as a notational convenience, all other geometric
quantities appearing without a superscript are taken to be at the current mesh con�guration.
Finally, it may be noted that in the absence of grid motion the mid-interval de�nitions given
in Equation (13) recover their appropriate �xed grid meaning.

3.4. Flux evaluation for the momentum equations

Recalling Equations (8) and (9), the assembly procedure for the linearized momentum equa-
tions reduces to evaluating A and b for each velocity component at each vertex in the tessel-
lation. During the assembly procedure each edge makes contributions to A and b with valid
expressions for the momentum conservation available only after all dual edge facets in the
tessellation have contributed and all dual control volumes have been closed. Per-edge contri-
butions to the diagonal coe�cient and source term, denoted by Ae and be, respectively, are
given below for the convective, viscous and pressure �uxes forming the steady-state momen-
tum balance.

3.4.1. Convective �ux. The momentum �ux at a dual edge

[�v(v − s) · n]e=[vf]e (14)

is evaluated using the trapezoidal rule in conjunction with a linear reconstruction [7, 9, 10] of
the velocity based on the upwind value of v and it’s gradient v∇. Sampling the edge mass
�ux, fe, at the edge midpoint yields

fe=�
(
1
2
(vc0 + vc1)− s(1=2)

)
· n1=2v0 (15)

where the cell-centred velocities, vc0 and vc1 are taken to be the average of the main mesh
vertex values surrounding c0 and c1.
Linearly reconstructing the edge velocity, ve, at the edge midpoint using upwind data yields

if fe¿0 ve= vv0 + (v∇)v0 · rv0 else ve= vv1 + (v∇)v1 · rv1 (16)

where r is the vector from the main mesh vertex to the mid-edge sample point [7]. Recalling
that nv1 =−nv0, the following per-edge contributions to the convective �ux are obtained.
Assembling at v0:

if fe¿0

{
Ae=fe else

be=−fe((v∇)v0 · rv0)

{
Ae=0

be=−fe(vv1 + (v∇)v1 · rv1)
(17a)

Assembling at v1:

if fe¿0

{
Ae=0 else

be=fe(vv0 + (v∇)v0 · rv0)

{
Ae=−fe
be=fe((v∇)v1 · rv1)

(17b)

The velocity gradient tensor, v∇, appearing in Equations (16) and (17) is computed using
Green’s Theorem over the median dual control volume using the edge-based procedure de-
scribed in Reference [7].
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3.4.2. Viscous �ux. The viscous stress vector at a dual edge

−[n · �]e (18)

can be written for constant viscosity, divergence-free conditions as

−[n · �]e=−�[v∇ · n]e (19)

where the Navier–Poisson law has been used to relate � to v∇. Again, Green’s Theorem is
used to evaluate the components of v∇ over the edge area �e, shown in Figure 2. After some
manipulation and again recalling that nv1 =−nv0 the following per-edge contributions to the
viscous �ux are obtained.
Assembling at v0:

Ae =
�
2�e

(nv0 · nv0)
(20a)

be =
�
2�e

(nv0 · nv0)vv1 − �
2�e

(vc0 − vc1)(nc0 · nv0)

Assembling at v1:

Ae =
�
2�e

(nv0 · nv0)
(20b)

be =
�
2�e

(nv0 · nv0)vv0 + �
2�e

(vc0 − vc1)(nc0 · nv0)

Figure 2. Integration path used for evaluating v∇ for viscous �uxes and ∇p for pressure equation.
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3.4.3. Pressure �ux. The pressure �ux at a dual edge

[pn]e (21)

is evaluated using the trapezoidal rule. Again, recalling that nv1 =−nv0 the following per-edge
contributions to the pressure �ux are obtained.
Assembling at v0:

be=−1
2
(pco + pc1)nv0 (22a)

Assembling at v1:

be=
1
2
(pco + pc1)nv0 (22b)

Equations such as (17), (20), and (22), which express the per-edge contributions to the �ux
balance in a �nite volume method are often referred to as edge formulas.

3.5. Flux evaluation for the pressure equation

For incompressible �ow, conservation of mass is a purely kinematic constraint requiring the
velocity �eld to be divergence-free. Since this constraint is instantaneous, the discrete form
of the pressure equation should also be instantaneous and not contain artifacts of the �ow
history. To clarify this point consider the momentum equations in co-ordinate-free divergence
form:

@
@t
(�v) +∇ · (�vv)=−∇p+ �∇2v+ B (23)

and continuity

∇ · v=0 (24)

The convective term �vv is a tensor product and can be rewritten as

∇ · (�vv)=�(v · ∇)v+ v(∇ · �v) (25)

For a uniform density �ow the second term on the right in Equation (25) is zero by continuity.
Consequently, the momentum equations can be rewritten as

@
@t
(�v) + (�v · ∇)v=−∇p+ �∇2v+ B (26)

Taking the divergence of Equation (26) gives

∇ ·
(
@
@t
(�v) + (�v · ∇)v

)
=∇ · (−∇p+ �∇2v+ B) (27)

Switching the order of di�erentiation in the unsteady and viscous terms and invoking conti-
nuity once more reveals the pressure equation in co-ordinate-free form to be

∇2p=−∇ · (�v · ∇)v+∇ · B (28)
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The pressure equation, Equation (28), when coupled with the momentum equations, governs
the time evolution of the pressure �eld. As can be seen from Equation (28), the pressure
equation is purely elliptic, of Poisson type, contains no �ow history and is inviscid.
We now derive the �nite volume form of Equation (28) from the �nite volume form of the

steady-state momentum equation and continuity. In accordance with Equation (28), the �nal
discrete form of the pressure equation will contain no artifacts of the �ow history. However,
for reasons that will become clear in the following development, the viscous term is retained
in the �nite volume form of Equation (28).
In �nite volume form, Equation (2), expressing mass conservation, is given by∑

(v · n)e=0 (29)

where the summation is taken over all edges forming a closed main control volume. In order
to facilitate the construction of the discrete form of the pressure equation, it is convenient to
rewrite the discrete steady-state form of the momentum equations, Equation (8), as

v= v̂ − 1
A

(
1
2
(pc0 + pc1)n

)
(30a)

where the nodal pseudo-velocity vector, v̂, is given by

v̂=
�b
A

(30b)

and where �b is the �ux source term excluding the pressure �ux, but including all other �ux
contributions as well as any volume sources. It is emphasized that A and �b appearing in
Equation (30) are assembled from the steady state form of the momentum equations and
therefore are entirely independent of �ow history. This is consistent with Equation (28).
However, the viscous �ux contribution is retained in the assembly of A and �b as they appear
in Equation (30). Although this is inconsistent with Equation (28), experience has shown that
by retaining the viscous contribution in the momentum equation the resulting pressure equation
coe�cients, to be presented in Equation (35), are guaranteed to remain positive even under
pathological conditions such as zero �uid velocity. If the viscous contribution is not retained
in the construction of the pressure equation coe�cients, this guarantee of positivity is lost.
The inconsistency between Equation (28), which is inviscid, and Equation (30), which

contains viscous contribution, is proportional to the degree that mass is conserved over a
main control volume. If continuity is satis�ed to machine precision the inconsistency van-
ishes. Although, the present method does not conserve mass to machine precision, numerical
experiments have indicated that the mass error is higher-order and has no signi�cant impact
on the accuracy or stability of the method [7].
Recalling that mass conservation, Equation (29), is enforced as a sum over edges for a main

control volume, a main edge velocity, ve, is proposed to facilitate coupling the pressure and
velocity �elds. Appealing to the de�nition of the nodal pseudo-velocity de�ned in Equation
(30), ve is taken to be of the form:

ve= v̂e −
(
1
A

)
e

∫
�e
(∇p)e d�e (31)

where v̂e is the main edge pseudo-velocity vector. Taking ∇p to be a constant over �e allows
the integral in Equation (31) to be evaluated using Green’s Theorem over the edge area,
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�e, shown in Figure 2, with the contour integral evaluated by the trapezoidal rule. After
some manipulation, the integral in Equation (31) can be written succinctly in terms of the
instantaneous main and dual control volume normal vectors, nc0 and nv0, respectively. The
resulting relation is∫

�e
(∇p) d�e= 12((pc1 − pc0)nc0 + (pv1 − pv0)nv0) (32)

Substituting Equation (32) into Equation (31) yields the following instantaneous pressure-
velocity coupling on a per-edge basis.

ve= v̂e −
(
1
2A

)
e
((pc1 − pc0)nc0 + (pv1 − pv0)nv0) (33)

Substituting this edge velocity into the mass conservation equation, Equation (29), gives the
�nite volume form of the pressure equation

∑ 1
2Ae

((pc1 − pc0)nc0 · nc0 + (pv1 − pv0)nc0 · nv0)− (v̂e · nc0)=0 (34)

where, again, the summation is taken over all edges forming a closed main control volume.
Recalling that all discrete equations are ultimately written in the form of Equation (8)

and solved by Jacobi iteration, the assembly procedure for the pressure equation reduces to
evaluating A and b at each cell centre in the domain. During the assembly procedure each
main edge makes contributions to A and b with valid expressions for the pressure equation
available only after all main edges in the tessellation have contributed and all main control
volumes have been closed. Per-edge contributions to the diagonal coe�cient and source term,
denoted by Ae and be, respectively, are given below for the pressure equation �uxes.
Assembling at c0:

Ae =
(
nc0 · nc0
2Ae

)
(35a)

be =
(
nc0 · nc0
2Ae

)
pc1 −

(
nv0 · nc0
2Ae

)
(pv0 − pv1)− (v̂e · nc0)

Assembling at c1:

Ae =
(
nc0 · nc0
2Ae

)
(35b)

be =
(
nc0 · nc0
2Ae

)
pc0 +

(
nv0 · nc0
2Ae

)
(pv0 − pv1)− (v̂e · nc0)

The edge values appearing in Equation (35) are interpolated from main mesh vertex data as

Ae
�e
=
1
2

(
An0
�n0

+
An1
�n1

)
(36a)

v̂e =
1
2
(v̂n0 + v̂n1) (36b)
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where the area weighted interpolation appearing in Equation (36a) properly accounts for the
di�erent control volume areas involved in the interpolation.
For an orthogonal quadrilateral mesh the second term appearing in the expression for be is

identically zero. For general mesh topologies, the magnitude of the product of the main and
dual edge normal vectors, nc0 · nv0, serves as an indicator of the orthogonality of a triangular,
hybrid and other general polygonal mesh. Here, the vertex centred pressure values, pv0 and
pv1 are taken as the average of the cell centred values for all main control volumes sharing
a common vertex.
As noted previously, the use of a staggered storage arrangement for the pressure and ve-

locity variables eliminates the need for a prescription of boundary and initial conditions for
pressure. Accordingly, the decomposition implied by Equation (30) is not performed for an
edge on the domain boundary since no pressure-velocity coupling is sought across boundary
edges. Consequently, when the pressure equation is assembled for control volumes adjacent
to the domain boundary, the physical velocity �ux leaving the domain through a bound-
ary edge, (v · n)e, appears naturally in place of the pseudo-velocity �ux (v̂ · n)e appearing in
Equation (35). Therefore, the global mass �ux∮

�(t)
v · n d� (37)

naturally appears in the discrete equation for pressure. This is consistent with the basic con-
servation laws, where the global mass �ux must be zero in order to satisfy the solvability
constraint associated with the incompressible Navier–Stokes equations [7].

3.6. Overall algorithm

The overall solution procedure for an unsteady moving grid problem can now be summarized
as follows.

Initialize �ow velocity and grid coordinate state at t n, i.e., (v;x)n.
Compute temporal source terms for �rst and second stages of time integration.
Solve �rst stage of time integrator.
Move grid to x(1).†
Compute spatial momentum residuals.
Compute v̂(1).
Compute p(1) using Jacobi point-iteration.
Compute v(1) using Jacobi point-iteration.
Return to † until convergence criteria is met.

State is now (v; p;x)(1); begin next stage.
Add temporal source term at t (1).
Solve second stage of time integrator.
Copy grid at x(1) to xn+1.
Compute spatial momentum residuals‡.
Compute v̂n+1.
Compute pn+1 using Jacobi point-iteration.
Compute vn+1 using Jacobi point-iteration.
Return to ‡ until convergence criteria is met.

State is now (v; p;x)n+1; go to next time-step.
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The following special cases of the general ALE algorithm are noted:

(i) For problems using a �xed grid the grid movement step is skipped.
(ii) For �rst-order time integration execute only the �rst stage with �11 set to unity.
(iii) For steady-state problems execute only the �rst stage for one time-step with �t set to

in�nity.

Since the momentum and pressure equations are solved iteratively in a sequential fashion,
underrelaxation is incorporated into the algorithm in order to retard changes in the solution
(principally, in the velocity �eld) from iteration to iteration in the outer solution loop. Relax-
ation is implemented according to

A
�
v= b+ (1− a) A

�
v∗ and

A
�
p= b+ (1− �)A

�
p∗ (38)

where v∗ and p∗ are the stored values of velocity and pressure from the previous outer
iteration and � is the relaxation coe�cient. Typical values of � for the momentum equations
range from 0.2 for complex turbulent �ows to 0.8 for simple laminar �ows. The value of �
for the pressure equation is typically 0.95 for all �ows.

4. NUMERICAL RESULTS

For steady-state problems on �xed orthogonal grids the method presented here degenerates
exactly to the steady formulation in Reference [7] and results for those problems will not be
repeated here. For unsteady problems even with a �xed grid the present method is somewhat
di�erent from that of [7] and the performance of the current method for these problems is
evaluated using Taylor �ow and the impulsively started �ow over a circular cylinder. Next, an
example demonstrating the GCL compliance of the DIRK time integrator is given followed by
an order of accuracy demonstration on a time-dependent mesh. Finally, the method is applied
to a periodically forced aeroelastic problem and a transient free surface problem.

4.1. Taylor decaying vortex �ow on a �xed mesh

In order to verify the order of accuracy of the present method, decaying vortex �ow is solved
using the present method on a square domain of dimension �=2. The exact solution, owing
to Taylor [11], in non-dimensional form is given by

u=− cos x sin y e−2t=Re (39a)

v= sin x cosy e−2t=Re (39b)

p=−1
4
(cos 2x + cos 2y)e−4t=Re (39c)

and the following L1 measure of the error norm is adopted

e1 =
1
N

N∑
i=1

|�computed − �exact| (40)
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Figure 3. Computed velocity vectors, pressure contours and comparison with exact
solution for decaying vortex �ow, Re=100, t=32:0, on a �xed 10× 10 uniform

quadrilateral mesh using DIRK time integration, �t=32:0.

where � is a generic dependent variable (i.e. u; v or p) and N is the number of nodes where
the solution is computed. Figure 3 shows the computed solution for the decaying vortex
problem on a �xed, 10× 10 uniform quadrilateral mesh at Re=100 after one time step. The
solution shown in the �gure corresponds to the time when the velocity �eld has decayed
to half its initial value. The agreement with the exact solution is also shown in the �gure
and is quite good. Figure 4 shows the convergence of the method with mesh and time-step
re�nement for a family of �xed uniform quadrilateral meshes and a series of time steps at
Re=100. The method may be seen to be second-order-accurate in time and space for this
problem on a �xed grid.

4.2. Impulsively started �ow over a circular cylinder

The computed length of the recirculation region in the wake of an impulsively started circular
cylinder at Re=40 is shown in Figure 5. Computations were done using a �xed 200× 60
quadrilateral O-grid with the outer domain boundary located twenty diameters away from the
cylinder where free-stream conditions were imposed on the velocity �eld.
Time step independent results were obtained using both the �rst-order Euler implicit and

the second-order DIRK method and are shown in the �gure along with the experimental data
of Coutanceau and Bouard [12]. Agreement with the experimental data is quite good using
either the �rst- or second-order method once a time-step independent solution is obtained.
Time-step independence is achieved with �t=0:2 and 0.02 for the second- and �rst-order
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Figure 4. Error norms for decaying vortex �ow at Re=100 and t=32:0: (a) For a family of �xed
uniform quadrilateral meshes using DIRK time integration, �t=0:5; (b) For a series of time steps using

DIRK time integration on a �xed 80× 80 uniform quadrilateral mesh.

methods, respectively. Also shown in the �gure is the number of outer iterations required per
time step to reduce the residuals to machine zero using 32 bit arithmetic. Although the DIRK
method requires two to three times the number of outer iterations compared to the Euler
method, the DIRK time integrator was approximately three times faster in run time compared
to the Euler method due to the greatly reduced number of time steps required to achieve time
step independence.

4.3. GCL compliance

Figure 6 shows the initial condition and the computed solution for uniform �ow after one
time step using the DIRK time integrator with severe deformation of the grid. The initial
condition is a uniform, diagonally inclined �ow with the same velocity �eld imposed as a
boundary condition for all subsequent times. The pressure gradient is shown in the contour
plot at t= t+�t and is shown to be zero to the precision of the 32 bit arithmetic used in the
calculation. Identical results were obtained using the Euler time integrator and consequently the
algorithm is seen to be GCL compliant using either the �rst- or second-order time integration
methods.

4.4. Taylor decaying vortex �ow on a deforming mesh

Figure 7 shows the initial condition and the computed solution for decaying vortex �ow after
one time step using the DIRK time integrator with severe random deformation of the grid.
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Figure 5. Wake recirculation length and convergence performance for an impulsively started circular
cylinder, Re=40, 200× 60 �xed quadrilateral O-grid using DIRK and Euler time integration.

The temporal order-of-accuracy of the method on a moving grid is also shown in the �gure
and is compared with the order-of-accuracy for the same problem on a �xed grid taken from
Figure 4. The method is shown to be second-order-accurate in time for the moving grid
calculation with essentially the same absolute error as for the �xed grid case. The accuracy
shown for this problem as well as previous demonstration problems suggests that the present
ALE method can be applied with con�dence to the more complex moving boundary problems
that follow.

4.5. Impulsively started hydrofoil with free surface

A more complex problem using a surface-�tted time-dependent mesh is that of an impulsively
started hydrofoil submerged below a free surface. The parameters of the simulation were cho-
sen to coincide with the experiment of Duncan [13]. The hydrofoil is at an angle of attack
of 5:0◦, submerged 1.03 chord lengths below the free surface. The Froude number, based on
chord length, is 0.567, and the Reynolds number was taken to be one million in accordance
with other numerical studies of the same problem [14, 15]. In what follows, edge formulas
are developed for assembling the kinematic free surface boundary condition and the computed
steady-state wave elevation is compared with other simulation results before the method is
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Figure 6. Uniform initial conditions and computed solution at t= t+�t showing isobars after one time
step using DIRK time integration with a time-dependent mesh.

Figure 7. Error norms for decaying vortex �ow at Re=100 and t=32:0 using DIRK time integration
on a time-dependent 80× 80 quadrilateral mesh. Typical portions of the mesh are shown at t=0:0

and 32.0 after a random distortion of the mesh.
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Figure 8. Control volumes for discretizing the dynamic and kinematic free surface boundary conditions.

applied to the unsteady, impulsively started problem. Details of the present free surface bound-
ary condition implementation and numerical results can be found in Reference [16].
In the case of two-dimensional gravity-driven �ow the vector of momentum sources

becomes

B=[0; �g]T (41)

where gravity is assumed to act in the negative y direction of a �xed Cartesian co-ordinate
system as shown in Figure 8. The gravitational body force term can be conveniently in-
corporated into the Navier–Stokes equations by adopting the piezometric pressure, p̃,
given by

p̃=p+ �gy (42)

where y is measured with respect to an arbitrary datum. The stress tensor, Equation (3), can
then be rede�ned as

T=−p̃I + � (43)

Without a loss of generality, the pressure at a free surface can be set to zero for incompressible
�ows and the isotropic component of the dynamic free surface boundary condition can be
written in terms of the piezometric pressure as

p̃=�g�(x; t) on y= �(x; t) (44)

where �(x; t) is measured with respect the undisturbed level of the free surface. For this
condition to be satis�ed exactly without linearization it must be applied on the instantaneous
free surface de�ned by �(x; t).
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For two-dimension �ow the kinematic free surface boundary condition is given by

@�
@t
+ u

@�
@x

− v=0 on y= �(x; t) (45)

where u and v are the Cartesian components of the �uid velocity vector [17]. Again, for this
condition is to be satis�ed exactly without linearization it must be applied on the instantaneous
free surface de�ned by �(x; t).
Integrating Equation (45) over the one-dimensional vertex-centred control volume shown

in Figure 8 gives the following �nite volume form:

@
@t

∫
�
� dx +

∫
�
u
@�
@x
dx −

∫
�
(v− �D(x)) dx=0 (46)

where � is the length of the free surface node control volume. A damping term has been
included in Equation (46) to annihilate outgoing waves as they approach the boundary of the
computational domain. Again, details of the implementation can be found in Reference [16].
As shown in Figure 8, the one-dimensional grid used to discretize Equation (46) is simply

the projection of the free surface boundary edges used by the two-dimensional �ow solver
onto a constant y plane. Since �(x; t) is measured in the y direction, the evolution of the free
surface elevation does not a�ect the x co-ordinate of the free surface nodes. Consequently,
the �nite volume form of the free surface elevation equation, Equation (46), does not involve
grid movement and the time dependency of the control volume used to discretize the free
surface elevation equation has been dropped.
Integrating Equation (46) over the one-dimensional free surface control volumes leads to

the semi-discrete form

d�
dt
+ R=0 (47a)

where spatial residual of the free surface elevation equation is given by

R=
∑
[u�nv0]e − (v− �D(x))� (47b)

Here, nv0 is the x component of the dual edge unit normal vector de�ned outward to v0 as
shown in Figure 8, and the summation is over the two free surface edges sharing a common
node. Following the notation and solution procedure adopted for the momentum equations,
the spatial residual of the free surface elevation equation is cast in the form:

R=A�− b (48)

where A is the diagonal coe�cient of � and b contains true source terms, as well as o�-
diagonal neighbour contributions to the �ux balance. Using an edge-based assembly procedure,
A and b are assembled by a sweep over all free surface edges with a valid system of linearized
equations available only after both adjoining edges have contributed to A and b and all free
surface node control volumes have been closed.
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Using upwind biased linear reconstruction to evaluate � at a free surface dual edge gives

if fe¿0 �e= �v0 +
(
d�
dx

)
v0

(
�xe
2

)
else �e= �v1 −

(
d�
dx

)
v1

(
�xe
2

)
(49)

where the dual edge �ux is given by

fe= unv0 (50)

with u and v taken to be piecewise constant over �. Following the notation used for the
assembly of the momentum equations the per-edge contributions to A and b are given below
for the convective contribution to Equation (48).
Assembling at v0:

if fe¿0



Ae=fe

be=−fe
(
d�
dx

)
v0

(
�xe
2

) else



Ae=0

be =−fe
(
�v1 −

(
d�
dx

)
v1

(
�xe
2

)) (51a)

Assembling at v1:

if fe¿0



Ae=0

be=−fe
(
�v0 +

d�
dx

)
v0

(
�xe
2

) else



Ae=−fe

be =−fe
(
d�
dx

)
v1

(
�xe
2

) (51b)

The nodal derivative in Equation (51) and control volume length in Equation (47) may also
be computed by a sweep over free surface edges with the per-edge contributions given by the
following.

Assembling at v0 and v1:
d�
dx
=
1
2

(
�v1 − �v0
�xe

)
and �=

(
�xe
2

)
(52)

Finally, adding the volume source to b by a sweep over free surface nodes completes the
assembly of the spatial residual in Equation (47). The free surface elevation equation, Equa-
tion (47), is advanced in time using the same implicit two-stage integrator used for the
momentum and turbulence closure equations and is simply imbedded within the sequential
solution strategy previously described for the basic system of �ow equations.
A typical numerical result for the steady-state problem is shown in Figure 9. In the �gure,

the hydrofoil, it’s viscous wake, and the free surface elevation are clearly evident. The SST
k −! based turbulence model [18, 19] was used to prescribe the eddy-viscosity in the calcu-
lation and a simple algebraic grid mover is adopted to co-ordinate the movement of interior
nodes [16]. A close up of a typical mixed-element mesh near the leading edge of the hydro-
foil is shown in Figure 10. In Figure 11 the free surface elevation computed with the present
method is compared with the numerical results of Lohner et al. [15] and Hino [14] and the
experimental data of Duncan [13]. It can be seen that all three methods give results that are
similar.
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Figure 9. Computed steady-state free surface elevation and velocity contours
for NACA0012 hydrofoil: Fr=0:567 and Re=106.

Figure 10. Mixed-element mesh for submerged NACA0012 hydrofoil: Fr=0:567 and Re=106.

The transient, impulsively started problem is quite di�erent from the steady-state problem
discussed above. In the case of steady �ow, all transient perturbations have departed the
domain, leaving a wave system that is stationary in the reference frame of the hydrofoil. In
the impulsively started case, however, waves of all lengths and phase speeds are allowed to
exist, some of which are long wavelength rapidly moving waves that propagate both upstream
and downstream. The presence of a long wavelength surge can be seen moving upstream in
Figure 12, as well as the shorter length waves characteristic of the steady-state wave system
developing downstream. Details of the calculation and a mesh re�nement study can be found
in Reference [16] and will not be repeated here.
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Figure 11. Comparison of computed steady state free surface elevations with experimental data for
submerged NACA0012 hydrofoil: Fr=0:567, Re=106 and s=1:03.

Figure 12. Computed free surface elevation time history for submerged
NACA0012 hydrofoil: Fr=0:567, Re=106 and s=1:03.
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Figure 13. Membrane wing section and free body.

Figure 14. Time series of free stream velocity, lift, drag, and mid-chord co-ordinate for a constant
tension membrane airfoil at Re=4000, St=1:8, �=0:3 and 	2 =2:0.

4.6. Periodically forced elastic membrane airfoil

Another example problem which uses a body-�tted time-dependent mesh is the aeroelastic
problem of a membrane airfoil forced by a harmonically varying free stream velocity. This
problem has been referred to as the ‘sail in a gust problem’ in previous work [20, 21]. The
membrane is assumed to be massless and the equilibrium conditions are stated in terms of
spatial Cartesian co-ordinates. Figure 13 illustrates an extensible �exible membrane restrained
at the leading and trailing edges subjected to �uid dynamic pressure. A discussion of the
physical parameters governing the viscous aeroelastic membrane wing problem can be found
in Reference [21].

Published in 2003 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:253–279



IMPLICIT EDGE-BASED ALE METHOD 277

Figure 15. Velocity �eld and membrane con�guration near the leading edge of a membrane airfoil at
four instants during the harmonic free stream forcing cycle at Re=4000, St=1:8, �=0:3 and 	2 =2:0.
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Imposing equilibrium in the normal direction gives

d2y
dx2

(
1 +

(
dy
dx

)2)−3=2
=−

(
�p
T

)
(53)

where T is the membrane tension, assumed constant here, and �p is the net �ow pressure
di�erence acting on the membrane. A discrete form of Equation (53) can easily be derived
and the equilibrium equation can be appended to the basic system of �ow equations as was
done for the free surface elevation equation.
Figure 14 shows the time series of free stream velocity, aerodynamic lift and drag, and the

y co-ordinate at the midchord point for the end-constrained membrane airfoil at an angle of
attack of 4:0◦. Again, a simple algebraic grid mover is adopted to co-ordinate the movement
of interior nodes [20]. Four complete cycles of free stream forcing are shown in the �gure
and after an initial transient period the system response can be seen to be nearly periodic at
the free stream forcing frequency. The �gure shows that the peak in the membrane de�ection
lags the peak in the freestream velocity by approximately 90◦. This phase lag, as well as the
large amplitude of the motion of the membrane is characteristic of a system that is being
driven near the system natural frequency.
The variation in the membrane pro�le may also be seen in Figure 15 where the �uid

velocity near the membrane leading edge is shown at several instants during one free stream
forcing cycle. In the �gure it can be seen that as the free stream velocity decelerates, the �ow
separates along the upper surface of the membrane and a region of recirculating �ow develops
near the leading edge and is convected downstream. The periodic appearance and collapse of
these �ow features, along with an attendant adjustment in the membrane con�guration, results
in an aeroelastic response which may not be characterized as simple harmonic response at the
free stream forcing frequency. Details of the calculation and a mesh re�nement study can be
found in Reference [20] and will not be repeated here.

5. CONCLUSION

A new method for solving the ALE form of the incompressible Navier–Stokes equations
has been presented and was shown to be second-order-accurate in both space and time on
a general time-dependent polygonal mesh. The method uses a staggered storage arrangement
for the �ow variables and was shown to be geometrically conservative to the precision of the
arithmetic used. Edge formulas were developed for the momentum and pressure equations as
well as for the non-linear free surface elevation equation. The method was applied to two
rather di�erent moving boundary problems using body-�tted mixed-element meshes. Overall,
the method was shown to be stable and accurate for the problems investigated and can be
readily extended to three dimensions.
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